3.3.66 \(\int \frac {x^2}{(1-x^2) \sqrt {-1-x^4}} \, dx\) [266]

Optimal. Leaf size=74 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {-1-x^4}}\right )}{2 \sqrt {2}}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {-1-x^4}} \]

[Out]

1/4*arctan(x*2^(1/2)/(-x^4-1)^(1/2))*2^(1/2)-1/4*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticF
(sin(2*arctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(-x^4-1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1332, 226, 1713, 209} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {2} x}{\sqrt {-x^4-1}}\right )}{2 \sqrt {2}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \text {ArcTan}(x)\left |\frac {1}{2}\right .\right )}{4 \sqrt {-x^4-1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((1 - x^2)*Sqrt[-1 - x^4]),x]

[Out]

ArcTan[(Sqrt[2]*x)/Sqrt[-1 - x^4]]/(2*Sqrt[2]) - ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x],
 1/2])/(4*Sqrt[-1 - x^4])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1332

Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[d/(2*d*e), Int[1/Sqrt[a + c*x^
4], x], x] - Dist[d/(2*d*e), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] &
& NeQ[c*d^2 + a*e^2, 0] && PosQ[c/a] && EqQ[c*d^2 - a*e^2, 0]

Rule 1713

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (1-x^2\right ) \sqrt {-1-x^4}} \, dx &=-\left (\frac {1}{2} \int \frac {1}{\sqrt {-1-x^4}} \, dx\right )+\frac {1}{2} \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {-1-x^4}} \, dx\\ &=-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {-1-x^4}}+\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+2 x^2} \, dx,x,\frac {x}{\sqrt {-1-x^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {-1-x^4}}\right )}{2 \sqrt {2}}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {-1-x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.08, size = 56, normalized size = 0.76 \begin {gather*} \frac {\sqrt [4]{-1} \sqrt {1+x^4} \left (F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )-\Pi \left (i;\left .\sin ^{-1}\left ((-1)^{3/4} x\right )\right |-1\right )\right )}{\sqrt {-1-x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 - x^2)*Sqrt[-1 - x^4]),x]

[Out]

((-1)^(1/4)*Sqrt[1 + x^4]*(EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1] - EllipticPi[I, ArcSin[(-1)^(3/4)*x], -1]))/
Sqrt[-1 - x^4]

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.20, size = 115, normalized size = 1.55

method result size
default \(-\frac {\sqrt {i x^{2}+1}\, \sqrt {-i x^{2}+1}\, \EllipticF \left (\left (\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}\right ) x , i\right )}{\left (\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}\right ) \sqrt {-x^{4}-1}}+\frac {\sqrt {i x^{2}+1}\, \sqrt {-i x^{2}+1}\, \EllipticPi \left (\sqrt {-i}\, x , i, \frac {\left (-1\right )^{\frac {1}{4}}}{\sqrt {-i}}\right )}{\sqrt {-i}\, \sqrt {-x^{4}-1}}\) \(115\)
elliptic \(-\frac {\sqrt {i x^{2}+1}\, \sqrt {-i x^{2}+1}\, \EllipticF \left (\left (\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}\right ) x , i\right )}{\left (\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}\right ) \sqrt {-x^{4}-1}}+\frac {\sqrt {i x^{2}+1}\, \sqrt {-i x^{2}+1}\, \EllipticPi \left (\sqrt {-i}\, x , i, \frac {\left (-1\right )^{\frac {1}{4}}}{\sqrt {-i}}\right )}{\sqrt {-i}\, \sqrt {-x^{4}-1}}\) \(115\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-x^2+1)/(-x^4-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/(1/2*2^(1/2)-1/2*I*2^(1/2))*(1+I*x^2)^(1/2)*(1-I*x^2)^(1/2)/(-x^4-1)^(1/2)*EllipticF((1/2*2^(1/2)-1/2*I*2^(
1/2))*x,I)+1/(-I)^(1/2)*(1+I*x^2)^(1/2)*(1-I*x^2)^(1/2)/(-x^4-1)^(1/2)*EllipticPi((-I)^(1/2)*x,I,(-1)^(1/4)/(-
I)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(-x^4-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x^2/(sqrt(-x^4 - 1)*(x^2 - 1)), x)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.11, size = 73, normalized size = 0.99 \begin {gather*} \frac {1}{2} \, \sqrt {i} {\rm ellipticF}\left (\sqrt {i} x, -1\right ) - \frac {1}{8} i \, \sqrt {2} \log \left (\frac {i \, \sqrt {2} x + \sqrt {-x^{4} - 1}}{x^{2} - 1}\right ) + \frac {1}{8} i \, \sqrt {2} \log \left (\frac {-i \, \sqrt {2} x + \sqrt {-x^{4} - 1}}{x^{2} - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(-x^4-1)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(I)*ellipticF(sqrt(I)*x, -1) - 1/8*I*sqrt(2)*log((I*sqrt(2)*x + sqrt(-x^4 - 1))/(x^2 - 1)) + 1/8*I*sqr
t(2)*log((-I*sqrt(2)*x + sqrt(-x^4 - 1))/(x^2 - 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2}}{x^{2} \sqrt {- x^{4} - 1} - \sqrt {- x^{4} - 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-x**2+1)/(-x**4-1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(-x**4 - 1) - sqrt(-x**4 - 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^2+1)/(-x^4-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-x^2/(sqrt(-x^4 - 1)*(x^2 - 1)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {x^2}{\left (x^2-1\right )\,\sqrt {-x^4-1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2/((x^2 - 1)*(- x^4 - 1)^(1/2)),x)

[Out]

-int(x^2/((x^2 - 1)*(- x^4 - 1)^(1/2)), x)

________________________________________________________________________________________